Wednesday, May 6, 2009

Fundamental principles

Levels of organization
 
Some of the biodiversity of a coral reef
Ecology can be studied at a wide range of levels, from large to small scale. These levels of ecological organization, as well as an example of a question ecologists would ask at each level, include:
Biosphere: " What role does concentration of atmospheric carbon dioxide play in the regulation of global temperature?"
Region: "How has geological history influenced regional diversity within certain groups of organisms?"

Landscape: "How do vegetated corridors affect the rate of movement by mammals among isolated fragments?"
Ecosystem: "How does fire affect nutrient availability in grassland ecosystems?"
Community: "How does disturbance influence the number of mammal species in African grasslands?"
Interactions: "What evolutionary benefit do zebras gain by allowing birds to remove parasites?"
Population: "What factors control zebra populations?"
Individual Organism: "How do zebras regulate internal water balance?" 
These levels range from broadest to most specific.

Biosphere

For modern ecologists, ecology can be studied at several levels: population level (individuals of the same species in the same or similar environment), biocoenosis level (or community of species), ecosystem level, and biosphere level.

The outer layer of the planet Earth can be divided into several compartments: the hydrosphere (or sphere of water), the lithosphere (or sphere of soils and rocks), and the atmosphere (or sphere of the air). The biosphere (or sphere of life), sometimes described as "the fourth envelope," is all living matter on the planet or that portion of the planet occupied by life. It reaches well into the other three spheres, although there are no permanent inhabitants of the atmosphere. Relative to the volume of the Earth, the biosphere is only the very thin surface layer that extends from 11,000 meters below sea level to 15,000 meters above.

It is thought that life first developed in the hydrosphere, at shallow depths, in the photic zone. (Recently, though, a competing theory has emerged, that life originated around hydrothermal vents in the deeper ocean. See Origin of life.) Multicellular organisms then appeared and colonized benthic zones. Photosynthetic organisms gradually produced the chemically unstable oxygen-rich atmosphere that characterizes our planet. Terrestrial life developed later, protected from UV rays by the ozone layer. Diversification of terrestrial species is thought to be increased by the continents drifting apart, or alternately, colliding. Biodiversity is expressed at the ecological level (ecosystem), population level (intraspecific diversity), species level (specific diversity), and genetic level.

The biosphere contains great quantities of elements such as carbon, nitrogen, hydrogen, and oxygen. Other elements, such as phosphorus, calcium, and potassium, are also essential to life, yet are present in smaller amounts. At the ecosystem and biosphere levels, there is a continual recycling of all these elements, which alternate between the mineral and organic states.

Although there is a slight input of geothermal energy, the bulk of the functioning of the ecosystem is based on the input of solar energy. Plants and photosynthetic microorganisms convert light into chemical energy by the process of photosynthesis, which creates glucose (a simple sugar) and releases free oxygen. Glucose thus becomes the secondary energy source that drives the ecosystem. Some of this glucose is used directly by other organisms for energy. Other sugar molecules can be converted to molecules such as amino acids. Plants use some of this sugar, concentrated in nectar, to entice pollinators to aid them in reproduction.

Cellular respiration is the process by which organisms (like mammals) break the glucose back down into its constituents, water and carbon dioxide, thus regaining the stored energy the sun originally gave to the plants. The proportion of photosynthetic activity of plants and other photosynthesizers to the respiration of other organisms determines the specific composition of the Earth's atmosphere, particularly its oxygen level. Global air currents mix the atmosphere and maintain nearly the same balance of elements in areas of intense biological activity and areas of slight biological activity.

Water is also exchanged between the hydrosphere, lithosphere, atmosphere, and biosphere in regular cycles. The oceans are large tanks that store water, ensure thermal and climatic stability, and facilitate the transport of chemical elements thanks to large oceanic currents.

For a better understanding of how the biosphere works, and various dysfunctions related to human activity, American scientists attempted to simulate the biosphere in a small-scale model, called Biosphere II.

No comments:

Post a Comment